

# **Power Supply**

Regulator Module



LB2645-001

# **Description:**

The IEC Regulator Module is a useful instrument that converts any AC or DC power source into a regulated, adjustable and metered power source at up to 1 amp. It is ideal for performing electronic experiments and can make the purchase of more expensive regulated power supplies unnecessary. The picture below shows the 1.2 – 20V.DC. model which is powered through 4mm sockets on the front panel or can be powered from a standard 240/12V.AC or DC. plug pak.

# **Specifications:**

#### Input:

12V.AC. 50/60Hz or up to 20V.DC.

#### **Output:**

1.2 – 20V.DC. regulated at 1 Amp continuous.

#### **Protection:**

The DC output is automatically protected by the internal electronics. If the output current is exceeded, the output voltage will reduce automatically to protect the circuitry.

### Regulation:

Better than 1% voltage fluctuation from no load to full load.

### Ripple and noise:

Better than 10mV ripple and noise at full load.

| Length: 125mm | Width: 105mm | Height: 55mm | Weight: 370g  |
|---------------|--------------|--------------|---------------|
|               |              | 1 10.9       | 1 1 3 9 1 1 3 |



# The Meaning of 'Regulation':

An **unregulated** power supply is simple and inexpensive but has the following disadvantages:

- The output voltage will rise and fall as the mains voltage rises and falls.
- If the load current changes, the output voltage changes also.
- If the DC output is filtered only by capacitance, the output voltage will contain more and more ripple as the output current (load) increases.

A **regulated** power supply is electronically more complex and is normally more expensive than a simple unregulated unit, but it has the following advantages:

- The output voltage does not alter as mains voltage fluctuates.
- The output voltage does not alter as the load current changes from zero to full load.
- The output voltage is smooth (ripple free) at no load through to full load.
- When the output voltage is set by the control knob there is no need to monitor it during experiments because it remains constant regardless of fluctuations in load current drawn.

### **Metering:**

LB2645-001(new).doc

The digital meter on the front panel indicates the output voltage.

### Note:

If the input voltage is low, the output may not achieve 20volts. For 20 volts output, an input of close to 14V.AC is required. **Do not exceed 20V.AC input.** 

Designed and manufactured in Australia

2